วันอาทิตย์ที่ 8 กรกฎาคม พ.ศ. 2555

เทคโนโลยีอวกาศ




           ปัจจุบันความก้าวหน้าด้านวิทยาศาสตร์เทคโนโลยีด้านการโคจรภายใต้แรงดึงดูดระหว่างมวล ถูกนำมาประยุกต์ใช้เพื่อช่วยพัฒนาองค์ความรู้ต่างๆ ทั้งทางด้านวิทยาศาสตร์ เศรษฐกิจ สังคม อุตุนิยมวิทยา ภูมิศาสตร์ หรือแม้แต่ช่วยอำนวยความสะดวกด้านการติดต่อสื่อสารอย่างทั่วถึงและรวดเร็ว ดังเช่นในยุคข้อมูลไร้พรมแดนอย่างทุกวันนี้ ตัวอย่างของวัตถุที่มีการโคจรภายใต้แรงดึงดูดระหว่างมวล เช่น ดาวเทียม กล้องโทรทรรศน์อวกาศ สถานีอวกาศ เป็นต้น พื้นฐานของการโคจรภายใต้แรงดึงดูดระหว่างมวลจำเป็นต้องอาศัยความรู้เกี่ยวกับเรขาคณิตของเส้นโค้งซึ่งเป็นรูปร่างของเส้นทางการเคลื่อนที่ โดยเฉพาะเรขาคณิตของวงรี ซึ่งได้กล่าวไว้คร่าวๆ แล้วในบทที่ 4 เส้นทางการเคลื่อนที่แบบวงรีสามารถอธิบายได้ด้วยกฎของเคปเลอร์ 3 ข้อ ดังต่อไปนี้ คือ


     1. ดาวเคราะห์ทั้งหมดจะมีเส้นทางการเคลื่อนที่เป็นวงรี โดยมีดวงอาทิตย์อยู่ที่ตำแหน่งจุดโฟกัสจุดหนึ่งของวงรี


     2. ถ้าลากเส้นตรงเชื่อมระหว่างดาวเคราะห์กับดวงอาทิตย์แล้ว เส้นตรงดังกล่าวจะกวาดพื้นที่ได้ค่าเท่ากันเมื่อช่วงเวลาที่ใช้เท่ากัน


     3. สำหรับวงโคจรแบบวงรีของวัตถุท้องฟ้าภายใต้แรงโน้มถ่วงระหว่างกัน คาบการโคจรกับระยะครึ่งแกนยาวจะมีความสัมพันธ์กันโดยที่ คาบการโคจรของวัตถุท้องฟ้า (หน่วยปี) ยกกำลังสอง จะมีค่าเท่ากับระยะครึ่งแกนยาว (ในหน่วย AU) ยกกำลังสาม


กฎของเคปเลอร์ในเบื้องต้นใช้อธิบายเส้นทางการเคลื่อนที่ของดาวเคราะห์รอบดวงอาทิตย์ ซึ่งเกิดจากแรงดึงดูดระหว่างมวลของดวงอาทิตย์กับดาวเคราะห์ แต่เนื่องจากแรงดังกล่าวเป็นแรงชนิดเดียวกับแรงดึงดูดระหว่างมวลของโลกกับดาวเทียม โลกกับสถานีอวกาศ ดวงอาทิตย์กับยานอวกาศ ฯลฯ จึงสามารถใช้กฎของเคปเลอร์ในการอธิบายเส้นทางการเคลื่อนที่ของวัตถุเหล่านี้ได้


- ดาวเทียม


     ปัจจุบันดาวเทียมถูกมนุษย์ส่งไปโคจรรอบโลกจำนวนนับไม่ถ้วน ด้วยประโยชน์ต่างๆมากมาย สามารถแบ่งประเภทของดาวเทียมตามหน้าที่ต่างๆ ได้ดังนี้


        (ก) ดาวเทียมสื่อสาร


        (ข) ดาวเทียมอุตุนิยมวิทยา


        (ค) ดาวเทียมสำรวจทรัพยากร


        (ง) ดาวเทียมทางทหาร


        (จ) ดาวเทียมสังเกตการณ์ทางดาราศาสตร์


     ดาวเทียมถูกส่งขึ้นไปจากโลกโดยยานขนส่งอวกาศ และสามารถโคจรรอบโลกได้อาศัยหลักการโคจรตามแรงดึงดูดระหว่างมวล ซึ่ง ณ ระดับความสูงจากผิวโลกระดับหนึ่ง ดาวเทียมจะต้องมีความเร็วเพียงค่าหนึ่งเท่านั้นจึงสามารถจะโคจรรอบโลกอยู่ได้โดยไม่หลุดจากวงโคจร โดยความเร็วดังกล่าวจะอยู่ในช่วง 7.6-11.2 กิโลเมตรต่อวินาที (รูปแบบการโคจรแบบวงกลมจนกระทั่งถึงรูปแบบการโคจรแบบพาราโบลา) ดังรูปที่ 1 ความเร็วดังกล่าวนี้ถูกควบคุมตั้งแต่เริ่มต้นปล่อยดาวเทียมเข้าสู่วงโคจรเพื่อให้เส้นทางการโคจรของดาวเทียมไม่ซ้อนทับกันกับดาวเทียมดวงอื่นๆ ดังนั้นแม้จะมีดาวเทียมอยู่มากมายแต่ดาวเทียมเหล่านี้จะไม่โคจรชนกันเลย เนื่องจากดาวเทียมแต่ละดวงจะมีสมบัติการเคลื่อนที่เฉพาะตัว


ขอบเขตความเร็วเริ่มต้นของดาวเทียมรูปที่ 1

การโคจรของดาวเทียม



     นอกจากนั้นยังสามารถแบ่งประเภทของดาวเทียมตามความสูงในการโคจรเทียบกับพื้นโลกได้ดังนี้คือ


     (1) สูงจากพื้นโลกประมาณ 41,157 กิโลเมตร เป็นดาวเทียมที่โคจรหยุดนิ่งกับที่เทียบกับพื้นโลก(Geostationary Satellites) จะลอยอยู่หยุดนิ่งค้างฟ้าเมื่อเทียบกับตำแหน่งใดตำแหน่งหนึ่งบนโลก โดยส่วนมากจะเป็นดาวเทียมประเภทดาวเทียมสื่อสาร ตัวอย่างเช่นดาวเทียมไทยคม ดาวเทียมเหล่านี้อยู่เหนือเส้นศูนย์สูตรโลกประมาณ จะวางตัวอยู่ในแนวเส้นศูนย์สูตรโลก และสูงจากพื้นโลกประมาณ 41,157 กิโลเมตร หรือประมาณ 1/10 เท่าของระยะทางจากโลกถึงดวงจันทร์ มีคาบการโคจรประมาณ 24 ชั่วโมง


     (2) สูงจากพื้นโลกประมาณ 9,700-19,400 กิโลเมตร เป็นดาวเทียมที่ไม่ได้หยุดนิ่งเทียบกับพื้นโลก(Asynchronous Satellite) ซึ่งโดยส่วนมากจะเป็นดาวเทียมนำทางแบบจีพีเอส (GPS: Global Positioning System) ซึ่งนำไปประยุกต์ใช้ในระบบการติดตาม บอกตำแหน่ง หรือนำร่องบนโลก ไม่ว่าจะเป็น เครื่องบิน เรือเดินสมุทร รถยนต์ ระบบดาวเทียมจีพีเอสจะประกอบด้วยดาวเทียม 24 ดวง ใน 6 วงโคจร ที่มีวงโคจรเอียงทำมุม 55 องศาในลักษณะสานกันคล้ายลูกตระกร้อ ดังรูปที่ 2 มีคาบการโคจรประมาณ 12 ชั่วโมง


     (3) สูงจากพื้นโลกประมาณ 4,800-9,700 กิโลเมตร เป็นดาวเทียมที่ไม่ได้หยุดนิ่งเทียบกับพื้นโลก (Asynchronous Satellite) ซึ่งเป็นระดับที่ถูกแบ่งวงโคจรไว้สำหรับดาวเทียมสำหรับการสำรวจ และสังเกตการณ์ทางวิทยาศาสตร์ อาทิเช่น การวิจัยเกี่ยวกับพืช-สัตว์ การติดตามร่องรอยของสัตว์ป่า เป็นต้น ดาวเทียมที่ระดับดังกล่าวมีคาบการโคจรประมาณ 100 นาที


     (4) สูงจากพื้นโลกประมาณ 130-1940 กิโลเมตร เป็นดาวเทียมที่ไม่ได้หยุดนิ่งเทียบกับพื้นโลก (Asynchronous Satellite) โดยส่วนมากจะเป็นดาวเทียมที่ใช้ในการสำรวจทรัพยากรบนโลกรวมไปถึงดาวเทียมด้านอุตุนิยมวิทยา


- กล้องโทรทรรศน์อวกาศ


     ในการสังเกตการณ์วัตถุท้องฟ้าทางดาราศาสตร์ซึ่งอยู่ไกล นักดาราศาสตร์จำเป็นต้องใช้กล้องโทรทรรศน์ จึงมีกล้องโทรทรรศน์กระจายอยู่ทั่วทุกมุมโลก แต่เนื่องจากกว่าที่แสงจากวัตถุท้องฟ้าเหล่านั้นจะเข้ามาสู่กล้องโทรทรรศน์บนโลกได้ต้องผ่านชั้นบรรยากาศโลกซึ่งมีบางช่วงความยาวคลื่นที่ถูกดูดกลืนหรือกระเจิงออกไปทำให้ผลการสังเกตการณ์ต้องคิดถึงค่าการรบกวนจากชั้นบรรยากาศ จึงมีแนวความคิดในการส่งดาวเทียมซึ่งติดตั้งกล้องโทรทรรศน์สังเกตการณ์ในอวกาศ และในปี พ.ศ. 2533 องค์การนาซาได้ส่งกล้องโทรทรรศน์อวกาศฮับเบิล (Hubble Space Telescope) ขึ้นไปประจำในวงโคจรรอบโลกที่ความสูง 600 กิโลเมตรเหนือผิวโลก บรรยากาศที่ความสูงดังกล่าวนี้เบาบางเทียบได้กับสภาวะสุญญากาศ ในการสังเกตการณ์ทางดาราศาสตร์ที่ระดับความสูงดังกล่าวจึงไม่มีผลกระทบจากบรรยากาศ


กล้องโทรทรรศน์อวกาศ ฮับเบิล


     กล้องโทรทรรศน์อวกาศฮับเบิลเป็นกล้องชนิดสะท้อนแสง มีขนาดความกว้างของกระจกปฐมภูมิ 2.4 เมตร โคจรรอบโลกทุกๆ 97 นาทีรวมน้ำหนักของตัวกล้องและอุปกรณ์ต่างๆ หนักถึง 11 ตัน มีขนาดความกว้าง 4.3 เมตร ยาว 13.3 เมตร ใช้พลังงานจากแผงเซลล์แสงอาทิตย์ที่ปีกทั้งสองข้าง กระแสไฟฟ้าที่ผลิตได้จะถูกเก็บไว้ในแบตเตอรี่นิเกิล-ไฮโดรเจนขนาดใหญ่ ตัวเพื่อใช้งานขณะที่กล้องโคจรไปอยู่ในเงาของโลกขณะไม่ได้รับแสง อุปกรณ์สำคัญที่ติดตั้งไปกับกล้องคือระบบคอมพิวเตอร์ กล้องถ่ายภาพมุมกว้าง เครื่องตรวจวัดสเปกตรัม เครื่องปรับทิศทางของกล้อง เป็นต้น ภาพถ่ายจากกล้องจะได้รับการวิเคราะห์โดยสถาบันวิทยาศาสตร์เพื่อใช้เป็นข้อมูลในทางดาราศาสตร์


     กล้องบนโลกนั้นสามารถส่องวัตถุท้องฟ้าได้ไกลราว 2 พันล้านปีแสง แต่กล้องฮับเบิลสามารถส่องได้ไกลถึง 14,000 ล้านปีแสง ข้อมูลที่ได้จากกล้องฮับเบิลเพียงระยะเวลาสั้นๆ สามารถแสดงให้เห็นถึงรายละเอียดต่างๆ ของวัตถุท้องฟ้าที่มนุษย์ไม่เคยเห็นมาก่อน กล้องฮับเบิลมีอายุการใช้งานนานถึง 20 ปี โดยคาดว่านาซาจะปลดระวางในปี พ.ศ. 2553


นอกจากนั้นยังมีกล้องโทรทรรศน์อวกาศรังสีเอกซ์จันทรา (Chandra X-Ray Observatory) ซึ่งถูกส่งขึ้นสู่อวกาศเมื่อวันที่ 23 กรกฎาคม 2543 ปฏิบัติภารกิจบนวงโคจรสูงจากผิวโลก โดยระยะห่างจากผิวโลกมากที่สุด 133,000 กิโลเมตร


ในอนาคตองค์การนาซาวางแผนจะสร้างและส่งกล้องโทรทรรศน์อวกาศตัวใหม่เพื่อทดแทนกล้องฮับเบิล ชื่อว่ากล้องโทรทรรศน์อวกาศ เจมส์ เว็บบ์ (James Webb Space Telescope) คาดว่าจะส่งขึ้นไปประมาณปี 2554 โดยกล้องดังกล่าวมีขนาดกระจกปฐมภูมิใหญ่ 6.5 เมตร ซึ่งใหญ่กว่ากล้องฮับเบิลประมาณ2-3 เท่า

ไม่มีความคิดเห็น:

แสดงความคิดเห็น